Identification and profiling of circulating metabolites of atazanavir, a HIV protease inhibitor.

نویسندگان

  • R ter Heine
  • M J X Hillebrand
  • H Rosing
  • E C M van Gorp
  • J W Mulder
  • J H Beijnen
  • A D R Huitema
چکیده

Atazanavir is a commonly prescribed protease inhibitor for treatment of HIV-1 infection. Thus far, only limited data are available on the in vivo metabolism of the drug. Three systemic circulating metabolites have been reported, but their chemical structures have not been released publicly. Atazanavir metabolites may contribute to its effectiveness but also to its toxicity and interactions. Thus, there is a need for extensive metabolic profiling of atazanavir. Our goals were to screen and identify previously unknown atazanavir metabolites and to develop a sensitive metabolite profiling method in plasma. Five atazanavir metabolites were detected and identified in patient samples using liquid chromatography coupled to linear ion trap mass spectrometry: one N-dealkylation product (M1), two metabolites resulting from carbamate hydrolysis (M2 and M3), a hydroxylated product (M4), and a keto-metabolite (M5). For sensitive semiquantitative analysis of the metabolites in plasma, the method was transferred to liquid chromatography coupled to triple quadrupole mass spectrometry. In 12 patient samples, all the metabolites could be detected, and possible other potential atazanavir keto-metabolites were found. Atazanavir metabolite levels were positively correlated with atazanavir levels, but interindividual variability was high. The developed atazanavir metabolic screening method can now be used for further clinical pharmacological research with this antiretroviral agent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drug Resistance Profile and Subtyping of HIV-1 RT Gene in Iranian Patients under Treatment

Identification of drug resistant mutations is important in the management of HIV-1 infected patients. The aim of the current study was to evaluate drug resistance profile of RT gene and assess subtype among HIV-1 circulating strains and intensification of physician’s options for the best therapy. HIV-1 RNA of 25 sampleswas extracted from plasma and RT Nested- PCR was performed and the fin...

متن کامل

Drug- Resistance- Associated Mutations and HIV Sub-Type Determination in Drug-Naïve and HIV-Positive Patients under Treatment with Antiretroviral Drugs

Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were d...

متن کامل

Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor

Human immunodeficiency virus infection / acquired immunodeficiency syndrome (HIV/AIDS) is a disease pertained to the human immune system. Given its crucial role in viral replication, HIV-1 protease (HIV-1 PR) is a prime therapeutic target in AIDS therapy. In this regard, the dynamic aspects of ligand-enzyme interactions may indicate an important role of conformational variability in HIV-1 PR in...

متن کامل

THE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL

Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...

متن کامل

Analysis of HIV-1 CRF_01 A/E protease inhibitor resistance: structural determinants for maintaining sensitivity and developing resistance to atazanavir.

A series of HIV-1 protease mutants has been designed in an effort to analyze the contribution to drug resistance provided by natural polymorphisms as well as therapy-selective (active and non-active site) mutations in the HIV-1 CRF_01 A/E (AE) protease when compared to that of the subtype B (B) protease. Kinetic analysis of these variants using chromogenic substrates showed differences in subst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 37 9  شماره 

صفحات  -

تاریخ انتشار 2009